

1 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Verida

ARCHITECTURE & CODEBASE
SECURITY AUDIT

19.11.2022

PUBLIC VERSION

Made in Germany by Chainsulting.de

2 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Table of contents

1. Disclaimer .. 5
2. About the Project and Company ... 6

2.1 Project Overview .. 7
3. Vulnerability & Risk Level ... 8
4. Auditing Strategy and Techniques Applied .. 9

4.1 Methodology ... 9

4.2 Codebase Overview .. 10
5. Scope of Work .. 13

5.1 Findings Overview ... 14
5.2 Manual and Automated Vulnerability Test ... 17
5.2.1 Verida Vault (iOS & Android) & Verida Protocol ... 17
CRITICAL ISSUES .. 22
HIGH ISSUES ... 22

5.2.1.1 App Transport Security .. 22
5.2.1.2 Update package.json packages to reduce vulnerabilities .. 24

MEDIUM ISSUES ... 26
5.2.1.3 Update package.json packages to reduce vulnerabilities .. 26
5.2.1.4 TLS Protocol Downgrade Attack .. 28
5.2.1.5 Unsecured Keychain Data ... 32
5.2.1.6 Exposed Pasteboard Data ... 36

CONFIDENTIAL

3 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.7 Improper Session Management ... 39

5.2.1.8 MediaProjection: Android Service Allows Recording of Audio, Screen Activity .. 41
5.2.1.9 Application Logs .. 42

5.2.1.10 Disabled SSL CA Validation and Certificate Pinning .. 46
5.2.1.11 Literals should not be thrown .. 48

Compliant Solution .. 49
5.2.1.12 Using http protocol is insecure. Use https instead. ... 49
5.2.1.13 Disclosing technology fingerprints ... 51
LOW ISSUES .. 52
5.2.1.14 XSS Injection via photo upload ... 52

5.2.1.15 Sensitive Information Disclosure .. 54
5.2.1.16 Bytecode Obfuscation .. 56
5.2.1.17 Using clear-text protocols is security-sensitive .. 59
5.2.1.18 Functions should not have identical implementations .. 59
5.2.1.19 Cognitive Complexity of functions should not be too high ... 60
5.2.1.20 Dead or commented out code .. 60
5.2.1.21 Default export names and file names should match ... 62

INFORMATIONAL ISSUES ... 63
5.2.1.22 Unused Permissions .. 63

5.2.1.23 Unprotected Exported Activities ... 64
5.2.1.24 Track uses of "TODO" tags ... 66
5.2.1.25 Imports from the same modules should be merged .. 70
5.2.1.26 "switch" statements should have at least 3 "case" clauses ... 71
5.2.1.27 Store URLs in global config file .. 72

CONFIDENTIAL

4 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.3 Focused Areas ... 73

5.3.1 Keyring (verida-js) .. 73
5.3.2 EncryptionUtils (verida-js) ... 73

5.3.3 Messaging inbox and outbox (verida-js) ... 74
5.3.4 Encrypted database (verida-js) .. 74
5.3.5 Storage Node Authorization (storage-node) .. 75
5.3.6 Storage Node Authorization (vault-auth-server) .. 75

6. Executive Summary ... 76
8. About the Auditor ... 77

5 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

1. Disclaimer

The audit makes no statements or warrantees about utility of the code, safety of the code, suitability of the business model, investment
advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of
the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only.

The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential,
not to copy, disclose or disseminate without the agreement of Verida Pte Ltd. If you are not the intended receptor of this document,
remember that any disclosure, copying or dissemination of it is forbidden.

Major Versions / Date Description
0.1 (25.02.2022) Layout
0.2 (02.03.2022) Test Deployment
0.5 (10.03.2022) Automated Security Testing

Manual Security Testing
0.6 (12.03.2022) Development Productivity (Code Conventions Check, packages)
0.7 (16.03.2022) Performance (Connection pooling, caching, Transaction Concurrency)
0.8 (20.03.2022) Maintainability & Ease of Deployment
0.9 (23.03.2022) Summary and Recommendation
1.0 (28.03.2022) Final document

6 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

2. About the Project and Company

Company address:

Verida Pte Ltd
Reg.: 202028969C
160 Robinson Road
 #14-04 Singapore Business Federation Centre
Singapore 068914

Website: https://www.verida.io

Twitter: https://twitter.com/verida_io

Discord: https://discord.com/invite/qb6vS43

Medium: https://news.verida.io

LinkedIn: https://www.linkedin.com/company/verida-technology

Telegram: https://t.me/verida_community

GitHub: https://github.com/verida

Blog: https://news.verida.io

7 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

2.1 Project Overview

Verida is a network of personal data owned and controlled by users. Users are incentivized to unlock their data stored on centralized
platforms. Builders access this data for new exciting use cases such as trusted storage, decentralized messaging and single sign on.
User's private data can be used as inputs into smart contracts, enabling connectivity to multiple blockchains.

Verida provides a protocol of servers, libraries and SDKs to enable a network of users to create decentralized identities that can
access deconcentrated services on the Verida Network. These offerings include database and block storage, messaging, notifications,
and blockchain interoperability. The Verida Protocol leverages the rapidly evolving Web3 technology stack, is natively multi-chain, and
adds missing decentralized services and technical capabilities where necessary.

Verida provides software SDKs that developers can integrate into their applications to leverage the technical capabilities of the Verida
Protocol. Verida provides open-source server nodes that can be operated by anyone on their own infrastructure, to earn tokens on the
Verida Network. Verida facilitates decentralized network services as centralized APIs will transition across to smart contracts on the
Verida Network once their technical requirements stabilize. Verida provides a reference implementation of a ‘Data Wallet’ (Verida
Vault), a mobile application for end users to create decentralized identities, securely store their private keys, and interact with the
Verida Network with its supported blockchains.

8 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

3. Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or
system. Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)
Critical 9 – 10 A vulnerability that can

disrupt the code functioning
in a number of scenarios
or creates a risk that the
code may be broken.

Immediate action to reduce risk level.

High 7 – 8.9 A vulnerability that affects
the desired outcome when
using a codebase,
or provides the opportunity
to use an application in an
unintended way.

Implementation of corrective actions as soon as
possible.

Medium 4 – 6.9 A vulnerability that could
affect the desired outcome of
executing the code in a
specific scenario.

Implementation of corrective actions in a certain
period.

Low 2 – 3.9 A vulnerability that does not
have a significant impact on
possible scenarios for the
use of the code and is
probably subjective.

Implementation of certain corrective actions or
accepting the
risk.

Informational 0 – 1.9 A vulnerability that have
informational character but is
not effecting any of the
code.

An observation that does not determine a level of risk

9 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

4. Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to
specification and best practices. To do so, reviewed line-by-line by our team of expert pen testers and developers, documenting any
issues as there were discovered.

4.1 Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:
i.Review of the specifications, sources, and instructions provided to Chainsulting to make sure we understand the size,
scope, and functionality of the codebase.

ii.Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential
vulnerabilities.

iii.Comparison to specification, which is the process of checking whether the code does what the specifications, sources,
and instructions provided to Chainsulting describe.

2. Testing and automated analysis that includes the following:
i.Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and
how much code is exercised when we run those test cases.

ii.Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.

3. Best practices review, which is a review of the codebase to improve efficiency, effectiveness, clarify, maintainability,
security, and control based on the established industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure your codebase.

10 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

4.2 Codebase Overview

Verida Vault

Source: https://github.com/verida/vault-mobile
Commit: 02b7fa610aeb6356b5865ba07f35194a12721ff3

Total : 277 files, 15701 codes, 282 comments, 1677 blanks, all 17660 lines

language files code comment blank total

JavaScript 140 9,770 162 1,009 10,941

TypeScript React 42 3,801 38 418 4,257

XML 78 1,113 0 78 1,191

TypeScript 14 1,014 82 172 1,268

JSON 3 3 0 0 3

Verida Protocol

1. Name: verida-js
Source: https://github.com/verida/verida-js
Commit: a39619b438af073a51a3c5c7d253dd3205891297

Total : 138 files, 7489 codes, 1520 comments, 1817 blanks, all 10826 lines

11 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

language files code comment blank total

TypeScript 93 6,621 1,499 1,657 9,777

JSON 11 351 21 10 382

Markdown 22 294 0 149 443

JSON with Comments 11 192 0 0 192

XML 1 31 0 1 32

2. Name: storage-node
Source: https://github.com/verida/storage-node
Commit: f515b5cfb8e7c69782cd5163c70c496519293d37

Total : 7 files, 502 codes, 62 comments, 101 blanks, all 665 lines

language files code comment blank total

JavaScript 7 502 62 101 665

3. Name: vault-auth-server

Source: https://github.com/verida/vault-auth-server
Commit: 584352561f55f390b3bf64f5af2d1ed51bbbeac0

12 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

 Total : 5 files, 309 codes, 18 comments, 68 blanks, all 395 lines

language files code comment blank total

JavaScript 5 309 18 68 395

4. Name: wallet-utils
Source: https://github.com/verida/wallet-utils
Commit: ed20ffc504c83800cb3ac472f821d4a85d3ff5e4

 Total : 7 files, 339 codes, 76 comments, 77 blanks, all 492 lines

language files code comment blank total

TypeScript 7 339 76 77 492

13 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5. Scope of Work

The Verida Team provided us with the files that needs to be tested. The scope of the audit is the Verida architecture and codebase.

1. Automated Vulnerability Test (OWASP, Acunetix, Sonarsource, Snyk, jsfuzz..)
2. Manual Security Testing (Line by line, Overflow, CVE, MAST etc.)
3. Test environment deployment
4. Evaluating and testing software architecture

- Development Productivity (Code Conventions Check, packages)
- Functions & Logic Testing
- Performance (Connection pooling, caching, Transaction Concurrency)
- Reliability & Availability
- Maintainability & Ease of Deployment

Particular areas are focused on the audit of the protocol
Keyring: https://github.com/verida/verida-js/blob/main/packages/keyring/src/keyring.ts
AutoAccount of Keyring: https://github.com/verida/verida-js/blob/7bffc4e4d4a1c7ab86838cf6a55bb4da9d65ac46/packages/account-
node/src/auto.ts#L33
EncryptionUtils: https://github.com/verida/verida-js/tree/main/packages/encryption-utils
Messaging inbox and outbox: https://github.com/verida/verida-js/tree/main/packages/client-ts/src/context/engines/verida/messaging
Encrypted database: https://github.com/verida/verida-js/blob/7bffc4e4d4a1c7ab86838cf6a55bb4da9d65ac46/packages/client-
ts/src/context/engines/verida/database/db-encrypted.ts#L60
Storage Node Authorization: https://github.com/verida/storage-node/blob/main/src/middleware/requestValidator.js
Vault Auth Server SessionManager: https://github.com/verida/vault-auth-server/blob/main/src/SessionManager.js

The main goal of this audit was to make sure the infrastructure is built according to newest standards and securely developed. The
auditors can provide additional feedback on the code upon the client’s request.

14 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.1 Findings Overview

No Title Severity Status
5.2.1.1 App Transport Security HIGH OPEN
5.2.1.2 Update package.json packages

to reduce vulnerabilities
HIGH OPEN

5.2.1.3 Update package.json packages
to reduce vulnerabilities

MEDIUM ACKNOWLEDGED

5.2.1.4 TLS Protocol Downgrade Attack MEDIUM ACKNOWLEDGED
5.2.1.5 Unsecured Keychain Data MEDIUM ACKNOWLEDGED
5.2.1.6 Exposed Pasteboard Data MEDIUM ACKNOWLEDGED
5.2.1.7 Improper Session Management MEDIUM ACKNOWLEDGED

2

11
8

6

27
Total Issues

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

CONFIDENTIAL

15 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.8 MediaProjection: Android
Service Allows Recording of
Audio, Screen Activity

MEDIUM ACKNOWLEDGED

5.2.1.9 Application Logs MEDIUM ACKNOWLEDGED
5.2.1.10 Disabled SSL CA Validation and

Certificate Pinning
MEDIUM ACKNOWLEDGED

5.2.1.11 Literals should not be thrown MEDIUM ACKNOWLEDGED
5.2.1.12 Using http protocol is insecure.

Use https instead.
MEDIUM ACKNOWLEDGED

5.2.1.13 Disclosing technology
fingerprints

MEDIUM ACKNOWLEDGED

5.2.1.14 XSS Injection via photo upload LOW ACKNOWLEDGED
5.2.1.15 Sensitive Information

Disclosure
LOW ACKNOWLEDGED

5.2.1.16 Bytecode Obfuscation LOW ACKNOWLEDGED
5.2.1.17 Using clear-text protocols is

security-sensitive
LOW ACKNOWLEDGED

5.2.1.18 Functions should not have
identical implementations

LOW ACKNOWLEDGED

5.2.1.19 Cognitive Complexity of
functions should not be too
high

LOW ACKNOWLEDGED

5.2.1.20 Dead or commented out code LOW ACKNOWLEDGED
5.2.1.21 Default export names and file

names should match
LOW ACKNOWLEDGED

5.2.1.22 Unused Permissions INFORMATIONAL ACKNOWLEDGED
5.2.1.23 Unprotected Exported

Activities
INFORMATIONAL ACKNOWLEDGED

CONFIDENTIAL

16 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.24 Track uses of "TODO" tags INFORMATIONAL ACKNOWLEDGED
5.2.1.25 Imports from the same

modules should be merged
INFORMATIONAL ACKNOWLEDGED

5.2.1.26 "switch" statements should
have at least 3 "case" clauses

INFORMATIONAL ACKNOWLEDGED

5.2.1.27 Store URLs in global config file INFORMATIONAL ACKNOWLEDGED

CONFIDENTIAL

17 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2 Manual and Automated Vulnerability Test

5.2.1 Verida Vault (iOS & Android) & Verida Protocol

Details (iOS)
Application Name Verida Vault
Platform iOS
Application Namespace io.verida.vault.internal
Version 0.0.14
Version Code 2
Application SHA1 Hash a17a9562e10ad0810373f41aa4ea1c75119ea4ce
Application MD5 Hash 41998bffe79d729574e94894da350cd3
Scans Static, Dynamic, API, Manual
Language React Native

Details (Android)
Application Name Verida Vault Internal
Platform Android
Application Namespace io.verida.vault.internal
Version 1.0.1
Version Code 2
Application SHA1 Hash 1123a796bf5ac85df949557ea9ee62f7f126ec44
Application MD5 Hash d4655c5f1cec36e43b5315a5fc52f573
Scans Static, Dynamic, API, Manual
Language React Native

18 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Test Summary (App)

Vulnerability Title Test Type Status
TLS Protocol Downgrade Attack API X
General Server Vulnerabilities API X
Buffer Overflow Vulnerabilities in HTTP Requests API ✓
Command Injection Vulnerabilities in HTTP Requests API ✓
Integer Overflow Vulnerabilities in HTTP Requests API ✓
JSON Depth Overflow in HTTP Requests API ✓
LDAP Injection Vulnerabilities in HTTP Requests API ✓
Regex DoS Vulnerabilities in HTTP Requests API ✓
SQL Injection Vulnerabilities in HTTP Requests API ✓
String Validation Vulnerabilities in HTTP Requests API ✓
XML-external-entity Injection Vulnerabilities in HTTP Body API ✓
Cross-site-scripting Vulnerabilities in HTTP Body API ✓
CORS Wild Character Vulnerabilities in HTTP Headers API ✓
Cross Site Tracing Vulnerabilities API ✓
Response Body Contains Non-HTTPS Links API ✓
HTTP TRACE method is enabled API ✓
HTTP Host Header Injection API ✓
OpenSSL CCS Injection Vulnerability API ✓
Heartbleed Vulnerability API ✓

19 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

TLS ROBOT Attack API ✓
TLS/SSL CRIME Attack API ✓
SSL/TLS Renegotiation Vulnerability API ✓
Unsecured Keychain Data Manual X
Exposed Pasteboard Data Manual X
Improper Session Management Manual ✓
Sensitive Information Disclosure Manual X
Business Logic Manual ✓
Buffer Overflows and Underflows Manual ✓
One Time Password Bypass Manual ✓
Insecure Direct Object Reference Manual ✓
Misconfigured AWS S3 Buckets Manual ✓
Insecure Cookie Attributes Manual ✓
Stack Trace Enabled Manual ✓
Insecure Biometric Authentication Manual ✓
Debug Logging with NSLog Dynamic ✓
Storing Information in Shared Preferences Dynamic ✓
Application Logs Dynamic X
Sensitive information in Sqlite database Dynamic ✓
Derived Crypto Keys Dynamic ✓
Sensitive Information in Property Lists Dynamic ✓
Sensitive Data in NSUserDefault Dynamic ✓

20 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Unsecured Data in CoreData Dynamic ✓
Unsecured Data in CouchDB Dynamic ✓
Unsecured Data in RealmDB Dynamic ✓
Unsecured Data in YapDB Dynamic ✓
Deprecated NSURLConnection Dynamic ✓
Insecure Cryptographic Keys Dynamic ✓
iOS SecKeyEncrypt implementation Dynamic ✓
Insecure Peer Connections Dynamic ✓
UIWebView Exploits Dynamic ✓
Insufficient Transport Layer Protection Dynamic ✓
Short HMAC Keys Dynamic ✓
Vulnerable Hash Algorithms Dynamic ✓
Zipperdown Vulnerability leading to Remote Code Execution Attack Dynamic ✓
App Transport Security Static X
Disabled SSL CA Validation and Certificate Pinning Static X
MediaProjection: Android Service Allows Recording of Audio, Screen Activity Static X
Unused Permissions Static X
Unprotected Exported Activities Static X
Bytecode Obfuscation Static X
Unprotected Services Static ✓
Improper Content Provider Permissions Static ✓
Improper Custom Permissions Static ✓

21 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Broken SSL Trust Manager Static ✓
Broken HostnameVerifier for SSL Static ✓
Insecure SSLSocketFactories Static ✓
HostnameVerifier Allowing All Hostnames Static ✓
App Extending WebViewClient Static ✓
JavascriptInterface Remote Code Execution Static ✓
Remote URL Redirection Vulnerability Static ✓
Content Provider File Traversal Vulnerability Static ✓
Android Fragment Injection Static ✓
Android Component Hijacking via Intent Static ✓
Network Security Misconfiguration Static ✓
PhoneGap Debug Logging Static ✓
PhoneGap Whitelist Open Access Static ✓
PhoneGap Whitelist RegEx Bypass Static ✓
iOS Binary having ASLR Protection Static ✓

22 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

CRITICAL ISSUES
During the audit, Chainsulting‘s experts found no Critical issues in the codebase and architecture

HIGH ISSUES
5.2.1.1 App Transport Security
Severity: HIGH
Status: OPEN
Platform: iOS
Code: CWE-319, MSTG-NETWORK-1
File(s) affected: /ios/myApp/Info.plist

Attack / Description On Apple platforms, a networking security feature called App Transport Security (ATS) is available to

apps and app extensions, and is enabled by default. It improves privacy and data integrity by ensuring
your app's network connections employ only industry-standard protocols and ciphers without known
weaknesses. This helps instil user trust that your app does not accidentally leak transmitted data to
malicious parties. By configuring this key's value in your app's Info.plist file, you can customize the
security of your network connections in a variety of ways.
You can:
▪ Allow insecure communication with particular servers
▪ Allow insecure loads for web views or for media, while maintaining ATS protections elsewhere in your
app
▪ Enable new security features such as Certificate Transparency

Misconfiguring App Transport Security (ATS) may lead to:
▪ Triggering App Store review and requiring justification
▪ Data getting accidentally leaked to malicious parties during transmission
▪ Loss of user trust

CONFIDENTIAL

23 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Code

App Transport Security (ATS), which is a networking security feature that ensures network connections
employ the most secure protocols and ciphers, was found to be misconfigured.
NSAllowsArbitraryLoads is set to YES
NSExceptionAllowsInsecureHTTPLoads set YES for domain localhost

Result/Recommendation App Transport Security (ATS) is enabled by default for apps linked against the iOS 9.0 or later, as
indicated by the default Boolean value of NO for the NSAllowsArbitraryLoads key. This key is at the
root level of the NSAppTransportSecurity dictionary. With ATS enabled, HTTP connections must use
HTTPS. Attempts to connect using insecure HTTP fail. ATS employs the Transport Layer Security
(TLS) protocol version 1.2.

The NSAppTransportSecurity key is available in both apps and app extensions. Starting in iOS 10.0
and later, the following subkeys are supported:

CONFIDENTIAL

24 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

▪ NSAllowsArbitraryLoadsInMedia
▪ NSAllowsArbitraryLoadsInWebContent
▪ NSRequiresCertificateTransparency
▪ NSAllowsLocalNetworking

For detailed documentation on configuring ATS, please read Information Property List Key Reference.
https://developer.apple.com/library/archive/technotes/tn2232/_index.html

5.2.1.2 Update package.json packages to reduce vulnerabilities
Severity: HIGH
Status: OPEN
Platform: React-Code
Code: NA
File(s) affected: package.json

Attack / Description

Severity Priority Score (*) Issue Breaking
Change

Exploit
Maturity

479/1000
Why? Has a fix available,
CVSS 5.3

Regular Expression Denial of
Service (ReDoS)
SNYK-JS-CSSWHAT-1298035

No No Known
Exploit

519/1000
Why? Has a fix available,
CVSS 6.1

Cross-site Scripting (XSS)
SNYK-JS-HERMESENGINE-
1015406

No No Known
Exploit

CONFIDENTIAL

25 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

569/1000
Why? Has a fix available,
CVSS 7.1

Use After Free
SNYK-JS-HERMESENGINE-
1309667

No No Known
Exploit

589/1000
Why? Has a fix available,
CVSS 7.5

Out-of-Bounds
SNYK-JS-HERMESENGINE-
1727253

No No Known
Exploit

539/1000
Why? Has a fix available,
CVSS 6.5

Prototype Pollution
SNYK-JS-HERMESENGINE-608850 No No Known

Exploit

544/1000
Why? Has a fix available,
CVSS 6.6

Denial of Service (DoS)
SNYK-JS-HERMESENGINE-629268 No No Known

Exploit

544/1000
Why? Has a fix available,
CVSS 6.6

Out-of-Bounds
SNYK-JS-HERMESENGINE-629748 No No Known

Exploit

589/1000
Why? Has a fix available,
CVSS 7.5

Regular Expression Denial of
Service (ReDoS)
SNYK-JS-NTHCHECK-1586032

No No Known
Exploit

589/1000
Why? Has a fix available,
CVSS 7.5

Regular Expression Denial of
Service (ReDoS)
SNYK-JS-REACTNATIVE-1298632

No No Known
Exploit

CONFIDENTIAL

26 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Code

NA

Result/Recommendation Changes to the following files to upgrade the vulnerable dependencies to a fixed version: package.json

"react-native": "0.65.0",
"react-native-svg": "^12.3.0",

MEDIUM ISSUES

5.2.1.3 Update package.json packages to reduce vulnerabilities
Severity: MEDIUM
Status: ACKNOWLEDGED
Platform: React-Code
Code: NA
File(s) affected: package.json

Attack / Description

Severity Priority Score (*) Issue Breaking
Change

Exploit
Maturity

539/1000
Why? Has a fix available, CVSS 6.5

Information Exposure
SNYK-JS-NODEFETCH-
2342118

No No Known
Exploit

520/1000
Why? Has a fix available, CVSS 5.9

Denial of Service
SNYK-JS-NODEFETCH-
674311

No No Known
Exploit

CONFIDENTIAL

CONFIDENTIAL

27 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

641/1000
Why? Proof of Concept exploit, Has
a fix available, CVSS 6.4

Access Restriction Bypass
SNYK-JS-URLPARSE-
2401205

No Proof of
Concept

641/1000
Why? Proof of Concept exploit, Has
a fix available, CVSS 6.4

Authorization Bypass
SNYK-JS-URLPARSE-
2407759

No Proof of
Concept

646/1000
Why? Proof of Concept exploit, Has
a fix available, CVSS 6.5

Authorization Bypass
SNYK-JS-URLPARSE-
2407770

No Proof of
Concept

703/1000
Why? Proof of Concept exploit,
Recently disclosed, Has a fix
available, CVSS 6.2

Authorization Bypass
Through User-Controlled
Key
SNYK-JS-URLPARSE-
2412697

No Proof of
Concept

586/1000
Why? Proof of Concept exploit, Has
a fix available, CVSS 5.3

Regular Expression Denial
of Service (ReDoS)
SNYK-JS-WS-1296835

No Proof of
Concept

Code

NA

Result/Recommendation Changes to the following files to upgrade the vulnerable dependencies to a fixed version: package.json

"metro-config": "^0.67.0",
"url-parse": "^1.5.9",

CONFIDENTIAL

28 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.4 TLS Protocol Downgrade Attack
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-757, V9.1.1
Platform: iOS
File(s) affected: NA

Attack / Description Typically, modern TLS servers support old protocol versions and weak cryptographic algorithms for

backward compatibility with older client and servers. One of the simplest and most reliable mitigation
for downgrade attacks which can be easily applied to modern TLS implementations is just disabling
insecure protocol versions and algorithms. But this may cost too much because of compatibility
issues.

To work with legacy servers, many TLS clients implement a downgrade path, in a first handshake
attempt, offer the highest protocol version supported by the client; if this handshake fails, then retry
(possibly repeatedly) with earlier protocol versions.

During the assessment of the application, it was seen that the application back end server supports
deprecated TLS versions (v1 and v1.1). These versions of TLS are vulnerable to known
vulnerabilities like POODLE and BEAST.

Code

TLS	1:	

			openssl	s_client	-connect	db.testnet.verida.io:5002	-tls1	
			CONNECTED(00000006)	
			depth=4	C	=	US,	O	=	"Starfield	Technologies,	Inc.",	OU	=	Starfield	Class	2	Certification	
			Authority	
			verify	return:1	
			depth=3	C	=	US,	ST	=	Arizona,	L	=	Scottsdale,	O	=	"Starfield	Technologies,	Inc.",	CN	=	
			Starfield	Services	Root	Certificate	Authority	-	G2	
			verify	return:1	
			depth=2	C	=	US,	O	=	Amazon,	CN	=	Amazon	Root	CA	1	
			verify	return:1	

CONFIDENTIAL

29 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

			depth=1	C	=	US,	O	=	Amazon,	OU	=	Server	CA	1B,	CN	=	Amazon	
			verify	return:1	
			depth=0	CN	=	verida.io	
			verify	return:1	

			Certificate	chain	
				0	s:/CN=verida.io	
						i:/C=US/O=Amazon/OU=Server	CA	1B/CN=Amazon	
				1	s:/C=US/O=Amazon/OU=Server	CA	1B/CN=Amazon	
						i:/C=US/O=Amazon/CN=Amazon	Root	CA	1	
				2	s:/C=US/O=Amazon/CN=Amazon	Root	CA	1	
						i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield	Technologies,	Inc./CN=Starfield	Services	Root	
			Certificate	Authority	-	G2	
				3	s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield	Technologies,	Inc./CN=Starfield	Services	Root	
			Certificate	Authority	-	G2	
						i:/C=US/O=Starfield	Technologies,	Inc./OU=Starfield	Class	2	Certification	Authority	

			Server	certificate	
			-----BEGIN	CERTIFICATE-----	
			MIIGKzCCBROgAwIBAgIQDkdmqq/V6vb/POdNO4G6yTANBgkqhkiG9w0BAQsFADBG	
			MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRUwEwYDVQQLEwxTZXJ2ZXIg	
			Q0EgMUIxDzANBgNVBAMTBkFtYXpvbjAeFw0yMjAyMDIwMDAwMDBaFw0yMzAzMDMy	
			MzU5NTlaMBQxEjAQBgNVBAMTCXZlcmlkYS5pbzCCASIwDQYJKoZIhvcNAQEBBQAD	
			ggEPADCCAQoCggEBANGuDIAWxDln4Z9VIOJzWbtpTdpYa5X1oimTHIWr2HGLqE1S	
			YlYw/4l7ATq+XWF4ruPr19PpQ+8+QU9gdrFLC+AbD0TmKJkJVnhKxhhWKGyGKaKZ	
			U3LHJHSD60RwAAuHSxhO0Bxb6/M+rY6v0PDCYJGGkvVXwLSpAqDWv7kGAtpVGDCD	
			nGpqegJ135dygNNpDYM6eUNzdHY9By2N5+drae/Lf343XO3j/MI7ExWV05PP0FNR	
			OtdLn05z/nQwcbsx5iCOEpBMUnKTxxhejqn+9n2dBY7YLBcysvSrlktomJi9t8OZ	
			kKsRcHLvWlTff5K3gHyhcXdB9Z0qvMCiZIuhdosCAwEAAaOCA0UwggNBMB8GA1Ud	
			IwQYMBaAFFmkZgZSoHuVkjyjlAcnlnRb+T3QMB0GA1UdDgQWBBQm9PRgikHbJiWc	
			SLhpV4Wx/wweezB1BgNVHREEbjBsggl2ZXJpZGEuaW+CEyoudGVzdG5ldC52ZXJp	
			ZGEuaW+CEyoubWFpbm5ldC52ZXJpZGEuaW+CCyoudmVyaWRhLmlvghEqLnZhdWx0	
			LnZlcmlkYS5pb4IVKi5kYXRhc3RvcmUudmVyaWRhLmlvMA4GA1UdDwEB/wQEAwIF	
			oDAdBgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwPQYDVR0fBDYwNDAyoDCg	
LoYsaHR0cDovL2NybC5zY2ExYi5hbWF6b250cnVzdC5jb20vc2NhMWItMS5jcmww	
EwYDVR0gBAwwCjAIBgZngQwBAgEwdQYIKwYBBQUHAQEEaTBnMC0GCCsGAQUFBzAB	
hiFodHRwOi8vb2NzcC5zY2ExYi5hbWF6b250cnVzdC5jb20wNgYIKwYBBQUHMAKG	
Kmh0dHA6Ly9jcnQuc2NhMWIuYW1hem9udHJ1c3QuY29tL3NjYTFiLmNydDAMBgNV	
HRMBAf8EAjAAMIIBfgYKKwYBBAHWeQIEAgSCAW4EggFqAWgAdgCt9776fP8QyIud	
PZwePhhqtGcpXc+xDCTKhYY069yCigAAAX63ygZ6AAAEAwBHMEUCICdH2qhGcOa7	
nqqCgQQ+davDr1VcERavZQ8deYezU4ufAiEAhLi3GSsX+z+li7CiOBfjLmG1WFsA	
1kFnM+Lcz/jBRBUAdQA1zxkbv7FsV78PrUxtQsu7ticgJlHqP+Eq76gDwzvWTAAA	

CONFIDENTIAL

30 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

AX63ygYHAAAEAwBGMEQCIB9GVNu8lTlmF783N7WZoiAYuLIg6qFJEmIs9xq4W2sm	
AiByfCmElRXnr9Dx8KM7cjPl3SuXW/GVy/akKN+S2DrIDAB3ALNzdwfhhFD4Y4bW	
BancEQlKeS2xZwwLh9zwAw55NqWaAAABfrfKBiUAAAQDAEgwRgIhANv2vLNXlezx	
vWoJaRJnS29tZIiW2h4ql3xFIyhtiJfZAiEA0hfIEZDZtKH7y9E/ogrxc/5+UyK/	
Xxqw9tONNC9w84swDQYJKoZIhvcNAQELBQADggEBAH4xbUIoXCEnbhH08RQHauiT	
MPycwwCxSA8rqHDj229oSf7JaRGOleQso1C8mViaWioaeiw1ygbAEjzLDZJfJf/7	
6wYErk6NyRW156g/MpPnT7r+RlPAGdPznAZ+G5Io/rPmnzsBpXQsv8EiRe97OgJk	
+07evAgL7EuiUiPJtoGlmE6BZJFaBqzKljkgbI9jbfX8trAj6HCj0Sihf8uwPhsG	
R7RSdykK1FHKC2IHQGePMWY4a3ouDOigxqRxQ/8VL91o9zlU4yYFil0DrEpoj8EH	
s3qPOl/ntrwTRoThly5LkKCE6A4KXYEF8ZOePzMuP5WKIKRgxqJ6p82PbeFk5z8=	
-----END	CERTIFICATE-----	
subject=/CN=verida.io	
issuer=/C=US/O=Amazon/OU=Server	CA	1B/CN=Amazon	

No	client	certificate	CA	names	sent	
Server	Temp	Key:	ECDH,	P-256,	256	bits	

SSL	handshake	has	read	5688	bytes	and	written	252	bytes	

New,	TLSv1/SSLv3,	Cipher	is	ECDHE-RSA-AES128-SHA	
Server	public	key	is	2048	bit	
Secure	Renegotiation	IS	supported	
Compression:	NONE	
Expansion:	NONE	
No	ALPN	negotiated	
SSL-Session:	
				Protocol		:	TLSv1	
				Cipher				:	ECDHE-RSA-AES128-SHA	
				Session-ID:	DE41F06D0BF22C405BF405910CCC961D9CE944519F2D392EE2725227CF763AB5	
				Session-ID-ctx:	
				Master-Key:	
				0010	-	23	46	e3	92	fb	89	fb	a1-e8	e3	56	72	f4	ad	8a	81	
				0020	-	3c	1f	5b	d8	c4	c5	f3	61-56	04	53	21	23	e5	3a	96	
				0030	-	c3	7f	62	16	26	de	33	af-a5	3a	44	83	2c	ea	26	9f	
				0040	-	23	b6	68	06	ec	de	5b	6b-23	7b	37	ca	01	4e	98	7d	
				0050	-	d3	35	b9	58	e1	79	f3	06-53	97	ba	f0	11	3c	bb	59	
				0060	-	64	fa	3d	b8	08	c0	cb	da-b6	b8	57	07	4e	f3	0d	09	
				0070	-	7a	10	cf	e9	5e	07	35	5a-21	0e	39	bd	3a	c0	59	37	
				0080	-	d0	f7	da	9c	fc	20	9f	1e-87	42	34	73	58	15	f6	02	
				0090	-	73	ee	99	4e	9c	22	7d	18-3f	b3	92	ad	f8	57	7c	26	
				00a0	-	38	02	34	9d	9f	98	cd	18-cc	be	f5	fc	48	5b	59	fa	
F79278F9B78998FC3DCB44E9A9FDEFBAC383A200E932C457B821AB6C6300F8B3F7419013F57DBCD043BD5ECF303FFB6F	

CONFIDENTIAL

31 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

				TLS	session	ticket	lifetime	hint:	43200	(seconds)	
				TLS	session	ticket:	
				0000	-	38	f4	d5	de	c6	a7	09	53-c5	c4	e0	9d	bf	60	c0	8f	
	
Start	Time:	1646898854	
				Timeout			:	7200	(sec)	
				Verify	return	code:	0	(ok)	

TLS	1.1:	

openssl	s_client	-connect	db.testnet.verida.io:5002	-tls1_1	
CONNECTED(00000006)	
depth=4	C	=	US,	O	=	"Starfield	Technologies,	Inc.",	OU	=	Starfield	Class	2	Certification	
Authority	
verify	return:1	
depth=3	C	=	US,	ST	=	Arizona,	L	=	Scottsdale,	O	=	"Starfield	Technologies,	Inc.",	CN	=	
Starfield	Services	Root	Certificate	Authority	-	G2	
verify	return:1	
depth=2	C	=	US,	O	=	Amazon,	CN	=	Amazon	Root	CA	1	
verify	return:1	
depth=1	C	=	US,	O	=	Amazon,	OU	=	Server	CA	1B,	CN	=	Amazon	
verify	return:1	
depth=0	CN	=	verida.io	
verify	return:1	

Certificate	chain	
	0	s:/CN=verida.io	
			i:/C=US/O=Amazon/OU=Server	CA	1B/CN=Amazon	
	1	s:/C=US/O=Amazon/OU=Server	CA	1B/CN=Amazon	
			i:/C=US/O=Amazon/CN=Amazon	Root	CA	1	
	2	s:/C=US/O=Amazon/CN=Amazon	Root	CA	1	
			i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield	Technologies,	Inc./CN=Starfield	Services	Root	
Certificate	Authority	-	G2	
	3	s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield	Technologies,	Inc./CN=Starfield	Services	Root	
Certificate	Authority	-	G2	
			i:/C=US/O=Starfield	Technologies,	Inc./OU=Starfield	Class	2	Certification	Authority	
	

Result/Recommendation Affected Domains
1. db.testnet.verida.io

CONFIDENTIAL

32 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

2. vault.schemas.verida.io
3. dids.testnet.verida.io

It is recommended to disable support for deprecated versions of TLS (v1 and v1.1)

To mitigate the Protocol Downgrade attack, one have to completely disable SSL 3.0 on the server
side and server implementation of TLS_FALLBACK_SCSV will make downgrade attacks impossible.

5.2.1.5 Unsecured Keychain Data
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-922, MSTG-AUTH-8
Platform: iOS
File(s) affected: NA

Attack / Description iOS provides the Keychain for secure data storage. However, in several scenarios, the Keychain can be

compromised and subsequently decrypted.
In all versions of iOS up to and including iOS 11, Keychain can be partially compromised if attacker has
access to the encrypted iTunes backup. Due to the way iOS re-encrypts Keychain entries when creating
iTunes backups, it is possible to partially decrypt Keychain when iTunes backup is available and
password for backup encryption is known (note that iTunes backups that are not encrypted do not allow
decryption of Keychain items).
Keychain access controls are rendered ineffective if a jailbreak has been applied to the device. In this
case any application running on the device can potentially read every other application's Keychain
items.
Lastly, for older devices, such as the iPhone 4, for which so-called "bootrom exploits" exist, the
Keychain can be compromised by an attacker with physical access to the device.

CONFIDENTIAL

33 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

During the assessment of the application, it was seen that the application stores account related
information like cryptographic keys, DID, seed values inside keychain in plain text.

Code

CONFIDENTIAL

34 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Result/Recommendatio
n

Store the sensitive data such as passwords in an encrypted form on the device keychain so that even if
the device is compromised no one can infer correct passwords.

CONFIDENTIAL

35 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

When storing data in the Keychain, use the most restrictive protection class (as defined by
kSecAttrAccessible attribute) that still allows your application to function properly. For example, if your
application is not designed to be running in the background, use kSecAttrAccessibleWhenUnlocked or
kSecAttrAccessibleWhenUnlockedThisDeviceOnly
To prevent Keychain item exposure via iTunes backup, use one of ...ThisDeviceOnly protection classes
if practical.
Finally, for highly sensitive data, consider augmenting protections offered by the Keychain with
application-level encryption. For example, rely upon the user to enter a passphrase to authenticate
within the application and use that passphrase to encrypt data before storing it into the Keychain.
 #define SALT_HASH

@"FvTivqTqZXsgLLx1v3P8TGRyVHaSOB1pvfm02wvGadj7RLHV8GrfxaZ84oGA8RsKdNRpxdAojXYg
9iAj"
 + (NSString *)securedSHA256DigestHashForPIN:(NSUInteger)pinHash
 {
 // 1
 NSString *name = [[NSUserDefaults standardUserDefaults] stringForKey:USERNAME];
 name = [name stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
 // 2
 NSString *computedHashString = [NSString stringWithFormat:@"%@%i%@", name, pinHash,
 SALT_HASH];
 // 3
 NSString *finalHash = [self computeSHA256DigestForString:computedHashString];
 NSLog(@" Computed hash: %@ for SHA256 Digest: %@", computedHashString, finalHash);
 return finalHash;
 }
 NSLog(@"User entered PIN");
 if ([textField.text length] > 0) {

CONFIDENTIAL

36 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

 NSUInteger fieldHash = [textField.text hash];
 // 4
 NSString *fieldString = [KeychainWrapper securedSHA256DigestHashForPIN:fieldHash];
 NSLog(@" Password Hash - %@", fieldString);
 // Save PIN hash to the keychain (NEVER store the direct PIN)
 if ([KeychainWrapper createKeychainValue:fieldString forIdentifier:PIN_SAVED]) {
 [[NSUserDefaults standardUserDefaults] setBool:YES forKey:PIN_SAVED];
 [[NSUserDefaults standardUserDefaults] synchronize];
 NSLog(@" Key saved successfully to Keychain!!");

} }

5.2.1.6 Exposed Pasteboard Data
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-200, MSTG-PLATFORM-11
Platform: iOS
File(s) affected: NA

Attack / Description Both iOS and Android support copy/paste. Sensitive data may be stored, recoverable, or could be

modified from the clipboard in clear text, regardless of whether the source of the data was initially
encrypted. If it is in plaintext at the moment the user copies it, it will be in plaintext when other
applications access the clipboard.

Exposing sensitive data like passwords in pasteboard/clipboard which can be used by other
applications

The application was seen using a general pasteboard for copying sensitive data like did and

CONFIDENTIAL

37 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

seed values. The data inside the general pasteboard can be read by any other application installed on
the device.

Code

CONFIDENTIAL

38 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Result/Recommendation Use application specific pasteboard. Also mark fields like passwords as secure so that their data can
never be copied

Pasteboards may be public or private. Public pasteboards are called system pasteboards; private
pasteboards are created by apps, and hence are called app pasteboards. Pasteboards must have
unique names. UIPasteboard defines two system pasteboards, each with its own name and purpose:

▪ UIPasteboardNameGeneral is for cut, copy, and paste operations involving a wide range of data
types. You can obtain a singleton object representing the General pasteboard by invoking the
generalPasteboard class method.

▪ UIPasteboardNameFind is for search operations. The string currently typed by the user in the search
bar (UISearchBar) is written to this pasteboard, and thus can be shared between apps. You can obtain
an object representing the Find pasteboard by calling the pasteboardWithName:create: class method,
passing in UIPasteboardNameFind for the name.

CONFIDENTIAL

39 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Typically you use one of the system-defined pasteboards, but if necessary you can create your own
app pasteboard using pasteboardWithName:create: If you invoke pasteboardWithUniqueName,
UIPasteboard gives you a uniquely- named app pasteboard. You can discover the name of a
pasteboard through its name property

Clear the Pasteboard once the application enters background. You can do this by adding the following
line in the method

- (void)applicationDidEnterBackground:(UIApplication *) application in AppDelegate.
If you are using a custom Pasteboard, replace [UIPasteboard generalPasteboard] with your custom
pasteboard.

 - (void)applicationDidEnterBackground:(UIApplication *)application
 {
 // Use this method to release shared resources, save user data, invalidate
 timers, and store enough application state information to restore your application
 to its current state in case it is terminated later.
 // If your application supports background execution, this method is called
 instead of applicationWillTerminate: when the user quits.
 [UIPasteboard generalPasteboard].items = nil;
 }

5.2.1.7 Improper Session Management
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-613, MSTG-AUTH-2
Platform: iOS
File(s) affected: NA

CONFIDENTIAL

40 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Attack / Description Once the user successfully logs in to the application with credentials, access tokens are generated by
the server and assigned to the user. Thereafter, access tokens are used to identify the users and
maintain the session until they logout. It is critical to generate, assign, invalidate access tokens
securely since they provide a way to authenticate and authorize to the server resources post login.
Failing to do so may result in loss of confidentiality and integrity.

If the application does not manage sessions securely, an attacker may be able to remotely
compromise accounts, reuse the tokens to make unauthorised API calls on behalf of other users.

The application does not invalidate the user's authorization token, long time after the user has logged
out of the application. If an attacker is able to steal a users authorization token, he/she would be able
to take over victim's account.

Code

The following request was made long after logging out of the application.

Request:

 GET /v70a00c6d5b8d0a071a3d359c43d867a233aebcc8b4a1a5d891d15bf529f825ef/basicProfile? HTTP/2
 Host: db.testnet.verida.io:5984
 Accept: application/json
 Content-Type: application/json
 Accept-Encoding: gzip, deflate
 User-Agent: Verida%20Vault%20Internal/2 CFNetwork/1240.0.4 Darwin/20.5.0
 Authorization: Basic
 djViODMzODFiNzU3OTZhNDA0MGE4MjI4NWY1ZGQ1ZTdiZGU3M2I4NWE1ZDczMTE3OGJlNjFhN2U1M2UzY2EwZTE6N2NhMjE
 4NWRkZGU0Njk3NWY0NDg4NDNiMDIzYjMyNzNjMjAwYTZmMDVkMzIxYTEzNzhiMjg5ZmViMzNmZTllYQ==
 Accept-Language: en-us

Response:

 HTTP/2 200 OK
 Date: Wed, 09 Mar 2022 06:46:25 GMT
 Content-Type: application/json
 Content-Length: 617
 Cache-Control: must-revalidate
 Etag: "7-71262c1f85973244d5d801682050d393"

CONFIDENTIAL

41 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

 Server: CouchDB/3.0.0 (Erlang OTP/20)
 X-Couch-Request-Id: 75008b9bce
 X-Couchdb-Body-Time: 0
 {"_id":"basicProfile","_rev":"7-71262c1f85973244d5d801682050d393","name":"Appknox
 Test1","schema":"https://common.schemas.verida.io/profile/basicProfile/v0.1.0/
 schema.json","modifiedAt":"2022-03-08T07:46:43.979Z","signatures":{"did:vda:
 0x820C4df61B28Dd9B09cE38C35e415F232A0a2DbB?
 context=0x2ebeefb9fa71543bc411cc2baf820181f49c6b9f18928f279334b27ee9f592e6":"0x3ded8297a444a527
 7cc5c84780021fd2d0dca3cef709cea932e68678e5a3afc7749a0896d681eeeb3b00b156ca4bbfa752c52bdf0dbeba9
 1752685a9fdf404ec1c"},"country":"India","avatar":{"uri":"data:text/
 html;base64,PD9waHAKcGhwaW5mbygpOwplY2hvICJoZWxsbyI7Cj8+"},"description":"Test"}

Result/Recommendation The application server should generate access tokens which are cryptographically strong, dynamic
and expires as soon as the user logs off or is inactive for a particular amount of time

5.2.1.8 MediaProjection: Android Service Allows Recording of Audio, Screen Activity
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-200, MSTG-STORAGE-9
Platform: Android
File(s) affected: NA

Attack / Description Starting with Android 5.0, Google introduced the android.media.projection API which allows any third-

party App to perform screen capture and screen sharing (fixed in Android 8). Such an App can capture
everything on the device’s screen, including sensitive activity from all other Apps such as password
keystrokes, credit card data, etc. The capturing ability remains on even if the user terminates/closes the
App, but not after a reboot.

Protect all sensitive windows within the App by enabling the FLAG_SECURE flag. This flag will prevent
Apps from being able to record the protected windows. Also, the flag will prevent users from taking
screenshots of these windows (by pressing the VOLUME_DOWN and POWER buttons). As such
screenshots are stored on the SDCard by default, they are accessible to all Apps and sensitive data
may be exposed.

CONFIDENTIAL

42 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

The App does not protect sensitive screens from being displayed in screencasts initiated by third-party
Apps

Code

NA

Result/Recommendation

Below is an example of how to use FLAG_SECURE inside your activity

public class SecureActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Set the Secure flag for this Window
 getWindow().setFlags(LayoutParams.FLAG_SECURE, LayoutParams.FLAG_SECURE);
 }

}
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_SECUR
E

5.2.1.9 Application Logs
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-779, MSTG-STORAGE-3
Platform: Android
File(s) affected: NA

Attack / Description Android provides capabilities for an app to output logging information and obtain log output.

Applications can send information to log output using the android.util.Log class. To obtain log output,
applications can execute the logcat command.

CONFIDENTIAL

43 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Application was found to be writing logs to the system logs

Reference: android.util.Log.d
Tag: SoLoader
Message: Loaded: libreactnativejni.so
Reference: android.util.Log.d
Tag: SoLoader
Message: About to load: libfbjni.so
Reference: android.util.Log.d
Tag: SoLoader
Message: libfbjni.so not found on /data/data/io.verida.vault.internal/lib-main
Reference: android.util.Log.d
Tag: SoLoader
Message: libfbjni.so found on /data/app/io.verida.vault.internal-58irUQCvmb7Vuq_OZzPW-Q==/lib/
arm64
Reference: android.util.Log.d
Tag: SoLoader
Message: Not resolving dependencies for libfbjni.so
Reference: android.util.Log.d
Tag: SoLoader
Message: Loaded: libfbjni.so
Reference: android.util.Log.v
Tag: RNKeychainManager
Message: warming up started at 1549545372464196
Reference: android.util.Log.d
Tag: RNKeychainManager
Message: Probe cipher storage: CipherStorageFacebookConceal
Reference: android.util.Log.d
Tag: RNKeychainManager
Message: Probe cipher storage: CipherStorageKeystoreAesCbc
Reference: android.util.Log.d

CONFIDENTIAL

44 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Tag: RNKeychainManager
Message: Probe cipher storage: CipherStorageKeystoreRsaEcb
Reference: android.util.Log.d
Tag: RNKeychainManager
Message: Selected storage: CipherStorageKeystoreAesCbc
Reference: android.util.Log.v
Tag: RNKeychainManager
Message: warming up takes: 226 ms
Reference: android.util.Log.d
Tag: SoLoader
Message: About to load: libyoga.so
Reference: android.util.Log.d
Tag: SoLoader
Message: libyoga.so not found on /data/data/io.verida.vault.internal/lib-main
Reference: android.util.Log.d
Tag: SoLoader

Message: libyoga.so found on /data/app/io.verida.vault.internal-58irUQCvmb7Vuq_OZzPW-Q==/lib/
 arm64
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: Not resolving dependencies for libyoga.so
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: Loaded: libyoga.so
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: init exiting
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: About to load: libreactnativeblob.so
 Reference: android.util.Log.d

CONFIDENTIAL

45 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

 Tag: SoLoader
 Message: libreactnativeblob.so not found on /data/data/io.verida.vault.internal/lib-main
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: libreactnativeblob.so found on /data/app/io.verida.vault.internal-
58irUQCvmb7Vuq_OZzPW-
 Q==/lib/arm64
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: Not resolving dependencies for libreactnativeblob.so
 Reference: android.util.Log.d
 Tag: SoLoader
 Message: Loaded: libreactnativeblob.so
 Reference: android.util.Log.i
 Tag: cr_LibraryLoader
 Message: Loaded native library version number "80.0.3987.132"
 Reference: android.util.Log.i
 Tag: VideoCapabilities
 Message: Unsupported profile 4 for video/mp4v-es

Code

NA

Result/Recommendation If a user is using Android OS 4.0 or before, other applications with READ_LOGS permission can
obtain the user's location information without declaring ACCESS_FINE_LOCATION permission in the
manifest file.

Never use logs in production. Find all Log.d() and remove them. Use exception parsers and crash-
based-analytics tool capture crashes in production so that it can be debugged
Sensitive data can inadvertently leak into the logs and may aid in further attacks

CONFIDENTIAL

46 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.10 Disabled SSL CA Validation and Certificate Pinning
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-295, MSTG-NETWORK-3
Platform: Android
File(s) affected: NA

Attack / Description Certificate Pinning is the process of associating a host with their expected X509 certificate or public

key. Once a certificate or public key is known or seen for a host, the certificate or public key is
associated or 'pinned' to the host. If more than one certificate or public key is acceptable. In this
case, the advertised identity must match one of the elements in the pinset.

A host or service's certificate or public key can be added to an application at development time, or
it can be added upon first encountering the certificate or public key. The former - adding at
development time - is preferred since preloading the certificate or public key out of band usually
means the attacker cannot taint the pin.
SSL Pinning is not implemented in the Application.

Code

NA

Result/Recommendation Certificate Pinning can be done with these two options:
You can
1. pin the certificate
2. pin the public key If you choose public keys, you have two additional choices: - pin the
subjectPublicKeyInfo or - pin one of the concrete types such as RSAPublicKey or DSAPublicKey.

The three choices are explained below in more detail. I would encourage you to pin the
subjectPublicKeyInfo because it has the public parameters (such as {e,n} for an RSA public key)

CONFIDENTIAL

47 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

and contextual information such as an algorithm and OID. The context will help you keep your
bearings at times, and the figure to the right shows the additional information available.

Certificate

The certificate is easiest to pin. You can fetch the certificate out of band for the website, have the
IT folks email your company certificate to you, use openssl s_client to retrieve the certificate etc. At
runtime, you retrieve the website or server's certificate in the callback. Within the callback, you
compare the retrieved certificate with the certificate embedded within the program. If the
comparison fails, then fail the method or function. There is a downside to pinning a certificate. If the
site rotates its certificate on a regular basis, then your application would need to be updated
regularly. For example, Google rotates its certificates, so you will need to update your application
about once a month (if it depended on Google services). Even though Google rotates its
certificates, the underlying public keys (within the certificate) remain static.

Public Key

Public key pinning is more flexible but a little trickier due to the extra steps necessary to extract the
public key from a certificate. As with a certificate, the program checks the extracted public key with
its embedded copy of the public key. There are two downsides to public key pinning. First, it's
harder to work with keys (versus certificates) since you must extract the key from the certificate.
Extraction is a minor inconvenience in Java and .Net, buts it's uncomfortable in
Cocoa/CocoaTouch and OpenSSL. Second, the key is static and may violate key rotation policies.

Hashing

While the three choices above used DER encoding, its also acceptable to use a hash of the
information. In fact, the original sample programs were written using digested certificates and
public keys. The samples were changed to allow a programmer to inspect the objects with tools
like dumpasn1 and other ASN.1 decoders.

CONFIDENTIAL

48 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Hashing also provides three additional benefits. First, hashing allows you to anonymize a certificate
or public key. This might be important if you application is concerned about leaking information
during decompilation and re-engineering. Second, a digested certificate fingerprint is often
available as a native API for many libraries, so its convenient to use. Finally, an organization might
want to supply a reserve (or back-up) identity in case the primary identity is compromised. Hashing
ensures your adversaries do not see the reserved certificate or public key in advance of its use. In
fact, Google's IETF draft websec-key-pinning uses the technique.	

5.2.1.11 Literals should not be thrown
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-397
Platform: verida-js
File(s) affected: packages/client-ts/src/context/engines/verida/database/base-db.ts,

Attack / Description It is a bad practice to throw something that’s not derived at some level from Error. Specifically, part

of the point of throwing Errors is to communicate about the conditions of the error, but literals have
far less ability to communicate meaningfully than Errors because they don’t include stacktraces.

Code

Line 238 (base-db.ts)
throw "Unable to delete. Read only.";

Result/Recommendation If you can’t find an existing Error type that suitably conveys what you need to convey, then you
should extend Error to create one.

Noncompliant Code Example

throw 404; // Noncompliant

CONFIDENTIAL

49 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

throw "Invalid negative index."; // Noncompliant

Compliant Solution

throw new Error("Status: " + 404);

throw new Error("Invalid negative index.");{code}

5.2.1.12 Using http protocol is insecure. Use https instead.
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CVE-2019-6169, CVE-2019-12327, CVE-2019-11065
Platform: vault-mobile
File(s) affected: src/pages/Inbox/DataSnapshot.js, src/pages/Inbox/DataSynchronization.js, src/pages/Inbox/EmploymentReference.js

Attack / Description Clear-text protocols such as ftp, telnet or non-secure http lack encryption of transported data, as

well as the capability to build an authenticated connection. It means that an attacker able to sniff
traffic from the network can read, modify or corrupt the transported content. These protocols are
not secure as they expose applications to an extensive range of risks:

• Sensitive data exposure
• Traffic redirected to a malicious endpoint
• Malware infected software update or installer
• Execution of client side code
• Corruption of critical information

CONFIDENTIAL

50 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Even in the context of isolated networks like offline environments or segmented cloud
environments, the insider threat exists. Thus, attacks involving communications being sniffed or
tampered with can still happen.

For example, attackers could successfully compromise prior security layers by:

• Bypassing isolation mechanisms
• Compromising a component of the network
• Getting the credentials of an internal IAM account (either from a service account or an actual

person)
In such cases, encrypting communications would decrease the chances of attackers to
successfully leak data or steal credentials from other network components. By layering various
security practices (segmentation and encryption, for example), the application will follow
the defense-in-depth principle.
Note that using the http protocol is being deprecated by major browsers

Code

Line 10 (DataSnapshot.js)
 uri: 'http://logok.org/wp-content/uploads/2014/05/Total-logo-earth-1024x768.png',

Line 10 (DataSynchronization.js)
uri: 'http://logok.org/wp-content/uploads/2014/05/Total-logo-earth-1024x768.png',

Line 19 (EmploymentReference.js)
uri: 'http://logok.org/wp-content/uploads/2014/05/Total-logo-earth-1024x768.png',

Result/Recommendation Make application data transit over a secure, authenticated and encrypted protocol like TLS or SSH.
Here are a few alternatives to the most common clear-text protocols:

• Usessh as an alternative to telnet
• Use sftp, scp or ftps instead of ftp
• Use https instead of http

CONFIDENTIAL

51 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

• Use SMTP over SSL/TLS or SMTP with STARTTLS instead of clear-text SMTP
• Enable encryption of cloud components communications whenever it’s possible.
• Configure your application to block mixed content when rendering web pages.
• If available, enforce OS level deativation of all clear-text traffic

It is recommended to secure all transport channels (even local network) as it can take a single non
secure connection to compromise an entire application or system.

5.2.1.13 Disclosing technology fingerprints
Severity: MEDIUM
Status: ACKNOWLEDGED
Code: CWE-200, OTG-INFO-008
Platform: storage-node
File(s) affected: storage-node/src/server.js

Attack / Description Disclosing technology fingerprints allows an attacker to gather information about the technologies

used to develop the web application and to perform relevant security assessments more quickly
(like the identification of known vulnerable components).

Code

Line 13 (InboxItem.js)
const app = express();

Result/Recommendation
It’s recommended to not disclose technologies used on a website, with x-powered-by HTTP header
for example. In addition, it’s better to completely disable this HTTP header rather than setting it a
random value.

x-powered-by HTTP header should be disabled in Express.js with app.disable or with
helmet hidePoweredBy middleware:

CONFIDENTIAL

52 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

let express = require('express');

let app1 = express();
app1.disable("x-powered-by");

let helmet = require("helmet");
let app2 = express();
app2.use(helmet.hidePoweredBy());

LOW ISSUES

5.2.1.14 XSS Injection via photo upload
Severity: LOW
Status: ACKNOWLEDGED
Code: CWE-16, V13.1.3
Platform: iOS
File(s) affected: NA

Attack / Description The API may be susceptible to general server vulnerabilities, which can lead to further attacks

In the profile picture upload feature, the application is not properly verifying the type of file uploaded
by the user. As a result, a malicious user can exploit this by uploading a php or javascript backdoor
file.

CONFIDENTIAL

CONFIDENTIAL

53 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Code

Request:	

			PUT	/v70a00c6d5b8d0a071a3d359c43d867a233aebcc8b4a1a5d891d15bf529f825ef/basicProfile	HTTP/2	
			Host:	db.testnet.verida.io:5984	
			Accept:	application/json	
			Content-Type:	application/json	
			Accept-Encoding:	gzip,	deflate	
			Content-Length:	594	
			User-Agent:	Verida%20Vault%20Internal/2	CFNetwork/1240.0.4	Darwin/20.5.0	
			Accept-Language:	en-us	
			Authorization:	Basic	
			djViODMzODFiNzU3OTZhNDA0MGE4MjI4NWY1ZGQ1ZTdiZGU3M2I4NWE1ZDczMTE3OGJlNjFhN2U1M2UzY2EwZTE6N2NhMjE	
			4NWRkZGU0Njk3NWY0NDg4NDNiMDIzYjMyNzNjMjAwYTZmMDVkMzIxYTEzNzhiMjg5ZmViMzNmZTllYQ==	
			{"_id":"basicProfile","_rev":"4-82b072ab8aafbb9fdf4ef87d3ed62db7","name":"Appknox	
			Test","schema":"https://common.schemas.verida.io/profile/basicProfile/v0.1.0/	
			schema.json","modifiedAt":"2022-03-08T07:44:09.046Z","signatures":{"did:vda:	
			0x820C4df61B28Dd9B09cE38C35e415F232A0a2DbB?	
			context=0x2ebeefb9fa71543bc411cc2baf820181f49c6b9f18928f279334b27ee9f592e6":"0xbd8b44b309a30405	
			82c4794afe49bba736c7fbff23272232db4af3308cbb00a80739a361f678ad39d618d0991d65658003e8787487083f3	
			67b8e0507eae125db1c"},"country":"India","avatar":{"uri":"data:text/	
			html;base64,PD9waHAKcGhwaW5mbygpOwplY2hvICJoZWxsbyI7Cj8+"}}	

Response:	

			HTTP/2	201	Created	
			Date:	Tue,	08	Mar	2022	07:44:33	GMT	
			Content-Type:	application/json	
			Content-Length:	75	
			Location:	https://db.testnet.verida.io:5984/	
			v70a00c6d5b8d0a071a3d359c43d867a233aebcc8b4a1a5d891d15bf529f825ef/basicProfile	
			Cache-Control:	must-revalidate	
			Etag:	"5-d8ae8d5d2c23594894529ff86234fbc2"	
			Server:	CouchDB/3.0.0	(Erlang	OTP/20)	
			X-Couch-Request-Id:	9ebfbc1f5e	
			X-Couchdb-Body-Time:	0	
			{"ok":true,"id":"basicProfile","rev":"5-d8ae8d5d2c23594894529ff86234fbc2"}	

Result/Recommendation It is recommended to maintain a whitelist of file types that should be allowed to upload on to the
server. Reject file upload requests for any other file types, which are not an image.

CONFIDENTIAL

54 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.15 Sensitive Information Disclosure
Severity: LOW
Status: ACKNOWLEDGED
Code: CWE-202, V13.1.3
Platform: iOS
File(s) affected: NA

Attack / Description Data in transit or at rest needs to be secured from exposure using proper access controls and

cryptography. Sometimes, even if cryptography is in place, it may not be sufficient as many application
still use weak cryptographic algorithms or vulnerable hash algorithms to protect sensitive data. The
application APIs can also reveal sensitive information if proper access controls are not kept in place
revealing sensitive information to outside world. Also, many applications leave the sensitive directories
open publicly which may reveal lot of sensitive information including internal software versions,
passwords, internal IPs etc.

Applications sometimes inadvertently expose sensitive data such as user’s passwords, financial data,
health records, PII etc. and this data can be stolen by attackers to perform identity theft, conduct credit
card frauds and large no. of other crimes.

In iOS, a screenshot of the current application window is taken and stored in application sandbox when
the application is moved to the background. The screenshots may contain sensitive application data.

CONFIDENTIAL

55 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Code

Result/Recommendation It is recommended to mask sensitive application data present on the application window before the
application moves to background.

Data should never be transmitted in clear text. Sensitive Data at rest should be stored with proper use
of encryption and proper access controls should be kept in place in order to protect the data exposure
across users and to the outside world.

CONFIDENTIAL

56 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.16 Bytecode Obfuscation
Severity: LOW
Status: ACKNOWLEDGED
Code: CWE-693, MSTG-RESILIENCE-9
Platform: Android
File(s) affected: NA

Attack / Description Generally, all mobile code is susceptible to reverse engineering. Some apps are more susceptible

than others. Code written in languages / frameworks that allow for dynamic introspection at runtime
(Java, .NET, Objective C, Swift) are particularly at risk for reverse engineering. Detecting
susceptibility to reverse engineering is fairly straight forward. First, decrypt the app store version of
the app (if binary encryption is applied). Code will be susceptible if it is fairly easy to understand the
app’s controlflow path, string table, and any pseudocode/source-code generated by these tools.
Bytecode obfuscation consists of multiple complementary techniques that can help create a
layered defense against reverse engineering and tampering. Some typical examples of obfuscation
techniques include:

▪ Renaming to alter the name of methods and variables to make the decompiled source much
harder for a human to understand.
▪ Control Flow Obfuscationcreates conditional, branching, and iterative constructs that produce
valid executable logic, but yield non-deterministic semantic results when decompiled.
▪ String Encryption hides strings in the executable and only restores their original value when
needed
▪ Instruction Pattern Transformation converts common instructions to other, less obvious constructs
potential confusing decompliers.
▪ Dummy Code Insertion inserts code that does not affect the program’s logic, but breaks
decompilers or makes reverse-engineered code harder to analyze.
▪ Unused Code and Metadata Removal prunes out debug, non-essential metadata and used code
from applications to reduce the information available to an attacker.

CONFIDENTIAL

57 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Java source code is typically compiled into Java bytecode – the instruction set of the Java virtual
machine. The compiled Java bytecode can be easily reversed engineered back into source code
by freely available decompilers. Bytecode Obfuscation is the process of modifying Java bytecode
(executable or library) so that it is much harder to read and understand for a hacker but remains
fully functional.
Application is vulnerable to reverse engineering without any obfuscation

Code

NA	
		

Result/Recommendation To enable shrinking, obfuscation, and optimization, using proguard include the following in your
project-level build.gradle file.

 android {
 buildTypes {
 release {
 // Enables code shrinking, obfuscation, and optimization for only
 // your project's release build type.
 minifyEnabled true
 // Enables resource shrinking, which is performed by the
 // Android Gradle plugin.
 shrinkResources true
 // Includes the default ProGuard rules files that are packaged with
 // the Android Gradle plugin. To learn more, go to the section about
 // R8 configuration files.
 proguardFiles getDefaultProguardFile(

} }

... }

'proguard-android-optimize.txt'),
'proguard-rules.pro'

CONFIDENTIAL

58 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Sample proguard-rules.pro which you can use to obfuscate code:

// Basic proguard rules
 -optimizations !code/simplification/arithmetic
 -keepattributes Annotation
 -keepattributes InnerClasses
 -keepattributes EnclosingMethod
 -keep class *.R$
 -dontskipnonpubliclibraryclasses
 -forceprocessing
 -optimizationpasses 5
 -overloadaggressively
 // Removing logging code
 -assumenosideeffects class android.util.Log {
 public static *** d();
 public static *** v();
 public static *** i();
 public static *** w();
 public static *** e();
 }
 // Crashlytics code as given below which one can exclude
 -keep class com.crashlytics.** { *; }
 -keep class com.crashlytics.android.**
 -keepattributes SourceFile,LineNumberTable

https://developer.android.com/studio/build/shrink-code

CONFIDENTIAL

59 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.17 Using clear-text protocols is security-sensitive
Severity: LOW
Status: ACKNOWLEDGED
Code: CVE-2019-6169, CVE-2019-12327, CVE-2019-11065
Platform: Android
File(s) affected: android/app/src/debug/AndroidManifest.xml

Attack / Description In order to view remote documents from an HTTP URL, cleartext network traffic support is

required. On Android 9.0 (API level 28) or higher, cleartext support is disabled by default and apps
targeting Android 9.0 or higher will need to add the android:usesClearTextTraffic="true" flag in
the AndroidManifest.xml file.

Code

Line 6 (AndroidManifest.xml)
<application android:usesCleartextTraffic="true" tools:targetApi="28"
tools:ignore="GoogleAppIndexingWarning" />

Result/Recommendation
If you are only working with HTTPS files, this flag is not required

5.2.1.18 Functions should not have identical implementations
Severity: LOW
Status: ACKNOWLEDGED
Code: NA
Platform: wallet-utils
File(s) affected: wallet-utils/src/chains/algorand.ts

Attack / Description When two functions have the same implementation, either it was a mistake - something else was

intended - or the duplication was intentional, but may be confusing to maintainers.

CONFIDENTIAL

60 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Code

Line 34 - 44 (src/chains/algorand.ts)
static getPublicKey(privateKey: string): string {
--
static getAddress(privateKey: string): string {

Result/Recommendation The code should be refactored.

5.2.1.19 Cognitive Complexity of functions should not be too high
Severity: LOW
Status: ACKNOWLEDGED
Code: NA
Platform: verida-js
File(s) affected: packages/client-ts/src/context/engines/verida/database/engine.ts,

Attack / Description Cognitive Complexity is a measure of how hard the control flow of a function is to understand.

Functions with high Cognitive Complexity will be difficult to maintain, it bloats programs and
reduces readability.

Code

Line 145 – 321 (engine.ts)
1
if (
-to-
}
33
else {

Result/Recommendation Refactor this function to reduce its Cognitive Complexity

5.2.1.20 Dead or commented out code
Severity: LOW

CONFIDENTIAL

61 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Status: ACKNOWLEDGED
Code: CWE-561
Platform: verida-js, verida-vault
File(s) affected: packages/client-ts/src/context/context.ts, packages/client-ts/src/context/engines/verida/database/engine.ts, verida-
vault/src/components/ImageLoader.js, verida-vault/src/components/Tokens/TokenBanner.js, verida-vault/
src/navigation/DashboardNavigator.tsx, verida-vault/src/pages/Inbox.js, verida-vault/src/pages/Profiles/EditProfile.tsx, verida-
vault/src/pages/Settings.js, verida-mobile/src/pages/Tokens/SendToken.js, verida-vault/src/wallet/data.js,

Attack / Description Programmers should not comment out code as it bloats programs and reduces readability.
Code

Line 397 (context.ts)
//const contextConfig = await this.getContextConfig(did, false)

Line 328 (engine.ts)
//let db = new Database(dbName, did, this.appName, this, config);

Line 19 (ImageLoader.js)
//const [granted, setGranted] = useState(null);

Line 4 (TokenBanner.js)
// import BuyIcon from 'assets/buy_icon.svg'

Line 12/17 (DashboardNavigator.ts)
// import { useAuth } from 'hooks/useAuth'
// const { isVeridaTeamMember } = useAuth()

Line 9 (Inbox.js)
//import Search from '../components/Search'; <Search />

Line 7 (EditProfile.ts)
// import IntlPhoneInput from 'react-native-intl-phone-input'

CONFIDENTIAL

62 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Line 83 – 90 (EditProfile.ts)
/* {option.type === 'phone' && (

Line 41 – 48 (Settings.js)
// const manageWalletOption = {
// const teamList = [manageWalletOption, ...publicList]

Line 12 – 56 (SendToken.js)
// import Text from 'components/Text'

Line 94 (data.js)
// let tokenAddress = getTokenAddress(ele.address)

Result/Recommendation Unused code should be deleted and can be retrieved from source control history if required.

5.2.1.21 Default export names and file names should match
Severity: LOW
Status: ACKNOWLEDGED
Code: S3317
Platform: verida-js, verida-vault
File(s) affected: account-node/src/auto.ts, account-node/src/limited.ts, packages/client-ts/src/context/engines/base.ts, packages/client-
ts/src/context/engines/verida/database/client.ts, packages/client-ts/src/context/engines/verida/database/db-encrypted.ts,
packages/client-ts/src/context/engines/verida/database/db-public.ts, packages/client-ts/src/context/engines/verida/database/engine.ts,
packages/client-ts/src/context/engines/verida/messaging/engine.ts, packages/client-ts/src/context/engines/verida/messaging/inbox.ts,
packages/client-ts/src/context/engines/verida/messaging/outbox.ts, packages/client-ts/src/context/engines/verida/notification/engine.ts,
verida-vault/src/components/Select.js, vault-auth-server/src/routes.js,

CONFIDENTIAL

63 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Attack / Description By convention, a file that exports only one class, function, or constant should be named for that

class, function or constant. Anything else may confuse maintainers.
Code

NA

Result/Recommendation Rename auto.ts to AutoAccount.ts
Rename limited.ts to LimitedAccount.ts
Rename base.ts to BaseStorageEngine.ts
Rename client.ts to DatastoreServerClient.ts
Rename db-encrypted.ts to EncryptedDatabase.ts
Rename db-public.ts to PublicDatabase.ts
Rename engine.ts to StorageEngineVerida.ts (packages/client-
ts/src/context/engines/verida/database/engine.ts)
Rename engine.ts to MessageEngineVerida.ts (packages/client-
ts/src/context/engines/verida/messaging/engine.ts)
Rename inbox.ts to VeridaInbox.ts
Rename outbox.ts to VeridaOutbox.ts
Rename engine.ts to NotificationEngineVerida.ts (packages/client-
ts/src/context/engines/verida/notification/engine.ts)
Rename Select.js to DropDownPicker.js (verida-vault/src/components/Select.js)
Rename user.js to UserController.js (storage-node/src/controllers/user.js)
Rename routes.js to router.js (vault-auth-server/src/routes.js)

INFORMATIONAL ISSUES

5.2.1.22 Unused Permissions
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: CWE-250, MSTG-PLATFORM-1

CONFIDENTIAL

CONFIDENTIAL

64 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Platform: Android
File(s) affected: NA

Attack / Description An app might request a user for certain permissions, like access to SD card, contacts, social profiles,

etc. which has not actually been invoked while the scan was running. We list out all these permissions
so that you can optimize your app and follow proper compliance checks.

Code

Application seems to be using extra permissions which are not really needed
android.permission.MODIFY_AUDIO_SETTINGS
android.permission.CHANGE_WIFI_MULTICAST_STATE
android.permission.READ_CONTACTS
android.permission.WAKE_LOCK
android.permission.READ_EXTERNAL_STORAGE
android.permission.VIBRATE	

Result/Recommendation Do not request for permissions beyond what your app actually needs.

Users may not download your app when presented with a long list of permissions. Imagine a flashlight
app requesting access to SD card, camera, contacts, SMS and more. This is an invitation to poor
ratings and reviews on App Stores. This also breaks compliance standards.

5.2.1.23 Unprotected Exported Activities
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: CWE-926, MSTG-PLATFORM-3, MSTG-PLATFORM-4
Platform: Android
File(s) affected: NA

CONFIDENTIAL

65 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Attack / Description Activities provide user interfaces. Activities are started with Intents, and they can return data to

their invoking components upon completion. All visible portions of applications are Activities.
Exported Activities can be called by any other application installed in the phone leading to XAS
(Cross Application Scripting)

The Android application exports Activity for use can launch the component or access the data it
contains. by other applications, but does not properly restrict which applications Unprotected
activity: androidx.biometric.DeviceCredentialHandlerActivity

Code

NA
		

Result/Recommendation If you are using a Activity for sharing between only your own apps, it is preferable to use the
android:protectionLevel attribute set to "signature" protection. Signature permissions do not require
user confirmation, so they provide a better user experience and more controlled access to the
application when the apps accessing the Activity are signed with the same key If the activity is
called within itself, then don't export it or use Intent-Filter for custom permission.

Attackers may use non-privileged services to intercept and track the user's activity. Furthermore, it
may be possible to insert data that may maliciously modify the behaviour of the application.

CONFIDENTIAL

66 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.2.1.24 Track uses of "TODO" tags
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: S1135, CWE-546
Platform: verida-js, verida-vault, storage-node, wallet-utils
File(s) affected: packages/account-web-vault/src/vault-account.ts, packages/client-ts/src/client.ts, packages/client-
ts/src/context/context.ts, packages/client-ts/src/context/datastore.ts, packages/client-ts/src/context/db-registry.ts, packages/client-
ts/src/context/engines/verida/database/base-db.ts, packages/client-ts/src/context/engines/verida/database/client.ts, packages/client-
ts/src/context/engines/verida/database/engine.ts, packages/client-ts/src/context/engines/verida/messaging/engine.ts, packages/client-
ts/src/context/engines/verida/messaging/inbox.ts, packages/client-ts/src/context/engines/verida/messaging/outbox.ts, packages/client-
ts/src/context/notification.ts, packages/client-ts/src/context/schema.ts, packages/client-ts/src/did-context-manager.ts, verida-
vault/src/helpers/inbox.js, verida-vault/src/helpers/notifications.ts, verida-vault/ src/hooks/useDeeplink.ts, verida-
vault/src/pages/Login/LoginRequest.js, verida-vault/src/wallet/data.js, storage-node/src/components/dbManager.js, storage-node/
src/middleware/requestValidator.js, wallet-utils/test/chains/near.js

Attack / Description TODO tags are commonly used to mark places where some more code is required, but which the

developer wants to implement later. Sometimes the developer will not have the time or will simply
forget to get back to that tag. This rule is meant to track those tags and to ensure that they do not
go unnoticed.

Code

Line 157 (vault-account.ts)
// @todo, support logging out just one

Line 146 (client.ts)
// @todo cache the storage contexts

Line 168 (client.ts)
// @todo cache the storage contexts

Line 152 (context.ts)
// @todo type cast correctly

CONFIDENTIAL

67 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Line 198 (context.ts)
// @todo type cast correctly

Line 380 (context.ts)
// @todo: Should this also call _init to confirm everything is good?

Line 408 (context.ts)
// @todo: Should this also call _init to confirm everything is good?

Line 204 (datastore.ts)
@todo: move this into context.openDatastore???

Line 235 - 236 (datastore.ts)
* @todo: Support removing indexes that were deleted from the spec
* @todo: Validate indexes

Line 138 (db-registry.ts)
@todo: Support updating permissions on a user database

Line 398 (base-db.ts)
@todo Think about signing data and versions / insertedAt etc.

Line 87 (client.ts)
// @todo: Application-Name needs to become Storage-Context

Line 24 (engine.ts)
// @todo
// @todo: dbmanager

Line 327 (engine.ts)
// @todo Cache databases so we don't open the same one more than once

CONFIDENTIAL

68 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Line 79 (engine.ts)
// @todo: Make it configurable if the notification service is pinged

Line 74 (inbox.ts)
// TODO: Verify the DID-JWT with a custom VID resolver

Line 187 (inbox.ts)
@todo: (bug) This opens the datastore based on the database endpoint, needs to open the datastore

Line 73 (outbox.ts)
// @todo: set a default expiry that is configurable but defaults to 24 hours?

Line 219 (outbox.ts)
// TODO: Validate the data is a valid schema (or an array of valid schemas)

Line 17 (notification.ts)
TODO: Change this

Line 89 (schema.ts)
@todo: Deprecate in favour of `getProperties()`

Line 122 (schema.ts)
// @todo: Fix schemas to have valid definitions and then enable strict compile

Line 248 (schema.ts)
// @todo: check valid uri

Line 126 (did-context-manager.ts)
// @todo: create error instance for this specific type of error

Line 49 (inbox.js)

CONFIDENTIAL

69 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

// @todo: Add to vault common

Line 72 (inbox.js)
// @todo: Add to vault common

Line 32 / 69 (notifications.ts)
// TODO
// TODO: handle remote notification
// TODO: handle other categories
// TODO

Line 16 (useDeeplink.ts)
//TODO: Handle more deeplink thre

Line 130 (LoginRequest.js)
// @todo use key to encrypt response to server

Line 178 (LoginRequest.js)
@todo: Move this into vault-common

Line 67 (data.js)
// TODO: dont hardcode

Line 78 (dbManager.js)
// @todo Support modifying user lists after db has been created

Line 11 (requestValidator.js)
@todo: cache the signature verifications

Line 54 (requestValidator.js)
// @todo: Log error

CONFIDENTIAL

70 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Line 24 (near.js)
// todo: Replace this with config variables locally and only run if specified

Result/Recommendation Remove or fix TODO comments

5.2.1.25 Imports from the same modules should be merged
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: NA
Platform: verida-js
File(s) affected: packages/client-ts/src/client.ts, packages/client-ts/src/context/context.ts, packages/client-
ts/src/context/engines/verida/database/db-encrypted.ts, packages/client-ts/src/context/engines/verida/messaging/engine.ts,
packages/client-ts/src/did-context-manager.ts,

Attack / Description Multiple imports from the same module should be merged together to improve readability.
Code

Line 1-14 (client.ts)
import EncryptionUtils from "@verida/encryption-utils";
import Encryption from "@verida/encryption-utils";

Line 1-14 (context.ts)
import { DatabaseOpenConfig, DatastoreOpenConfig, MessagesConfig } from "./interfaces";
import { StorageEngineTypes } from "./interfaces";

Line 6-7 (db-encrypted.ts)
import * as PouchDBCryptLib from "pouchdb";
import * as PouchDBLib from "pouchdb";

CONFIDENTIAL

71 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

Line 1-9 (engine.ts)
import { MessagesConfig } from "../../../interfaces";
import { MessageSendConfig } from "../../../interfaces";

Line 3-7 (did-context-manager.ts)
import { StorageLink } from "@verida/storage-link";
import { Interfaces } from "@verida/storage-link";

Result/Recommendation import { B1, B2 } from 'b';

5.2.1.26 "switch" statements should have at least 3 "case" clauses
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: NA
Platform: verida-vault
File(s) affected: verida-vault/src/pages/InboxItem.js

Attack / Description switch statements are useful when there are many different cases depending on the value of the

same expression.

Code

Line 24-30 (InboxItem.js)
switch (type) {
 case 'inbox/type/dataRequest':

CONFIDENTIAL

72 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

 return 'Data Request'
 default:
 return 'Inbox Message'
 }
}

Result/Recommendation
For just one or two cases however, the code will be more readable with if statements.

5.2.1.27 Store URLs in global config file
Severity: INFORMATIONAL
Status: ACKNOWLEDGED
Code: NA
Platform: vault-auth-server,
File(s) affected: vault-auth-server/blob/main/src/SessionManager.js,

Attack / Description Storing hardcoded URLs in plain codebase makes it hard to maintain.

Code

Line 240 - 244 (SessionManager.js)
endpointUri: 'https://db.testnet.verida.io:5001/'
},
 defaultMessageServer: {
 type: 'VeridaMessage',
 endpointUri: 'https://db.testnet.verida.io:5001/'

Result/Recommendation
It’s recommended to move the URL into a config file

CONFIDENTIAL

73 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.3 Focused Areas

5.3.1 Keyring (verida-js)

Source Keyring: https://github.com/verida/verida-js/blob/main/packages/keyring/src/keyring.ts

AutoAccount of Keyring: https://github.com/verida/verida-
js/blob/7bffc4e4d4a1c7ab86838cf6a55bb4da9d65ac46/packages/account-node/src/auto.ts#L33

Description

Class that takes a signature (generated from a signed consent message) and generates a
collection of asymmetric keys, symmetric key and signing key for a given secure storage context.

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: 5.2.1.21

5.3.2 EncryptionUtils (verida-js)

Source EncryptionUtils: https://github.com/verida/verida-js/tree/main/packages/encryption-utils

Description

Encryption utilities to make using tweetnacl a bit easier. Utilizes tweetnacl for symmetric and
asymmetric encryption. Utilizes keccak256 algorithm to hash signed data and secp256k1 signature
algorithm for the resulting signature. TweetNaCI is an audited encryption library, which uses the
xsalsa20-poly1305 algorithm, it also got audited https://cure53.de/tweetnacl.pdf.

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: 5.2.1.25

74 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.3.3 Messaging inbox and outbox (verida-js)

Source Messaging inbox and outbox: https://github.com/verida/verida-js/tree/main/packages/client-

ts/src/context/engines/verida/messaging

Description

Every application has a built-in inbox for receiving messages and outbox for sending messages.
This allows users and applications to send data between each other knowing nothing than the
other user's DID and application name.

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: 5.2.1.21, 5.2.1.24, 5.2.1.25

5.3.4 Encrypted database (verida-js)

Source Encrypted database: https://github.com/verida/verida-

js/blob/7bffc4e4d4a1c7ab86838cf6a55bb4da9d65ac46/packages/client-
ts/src/context/engines/verida/database/db-encrypted.ts#L60

Description

Encrypted sync of PounchDB

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: 5.2.1.21, 5.2.1.25

75 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

5.3.5 Storage Node Authorization (storage-node)

Source Storage Node Authorization: https://github.com/verida/storage-

node/blob/main/src/middleware/requestValidator.js

Description

Allow access to any user who provides a valid signed message for the given application

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: 5.2.1.24

5.3.6 Storage Node Authorization (vault-auth-server)

Source Vault Auth Server SessionManager: https://github.com/verida/vault-auth-

server/blob/main/src/SessionManager.js

Description

Session Management is handling the socket connections, generation of JWT and garbage
collection.

Test Encryption: ✅
Cryptographic vulnerabilities: None
Issues: None

76 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

6. Executive Summary

Three (3) independent Chainsulting experts performed an unbiased and isolated audit of the architecture and codebase. The
final debriefs took place on the March 25, 2022.

The main goal of this audit was to make sure the infrastructure is built according to newest standards and securely developed. During
the audit, no critical issues were found, after the manual and automated security testing. Overall, the code quality and architecture had
a high grad of professionalism.

We recommend the following things to apply to the next dev ops:

1. Check our issues and get them fixed
2. Make sure newest packages are used, wherever possible
3. Use linter for static code analysis to flag programming errors, bugs, stylistic errors and suspicious constructs

77 / 77 Chainsulting by SOFTSTACK GmbH Audit Report © 2022

8. About the Auditor

Chainsulting is a professional software development firm, founded in 2017 and based in Germany. They show ways, opportunities, risks
and offer comprehensive web3 solutions. Their services include web3 development, security and consulting.

Chainsulting conducts code audits on market-leading blockchains such as Solana, Tezos, Ethereum, Binance Smart Chain, and Polygon
to mitigate risk and instil trust and transparency into the vibrant crypto community. They have also reviewed and secure the smart
contracts of 1Inch, POA Network, Unicrypt, LUKSO among numerous other top DeFi projects.

Chainsulting currently secures $100 billion in user funds locked in multiple DeFi protocols. The team behind the leading audit firm relies
on their robust technical know-how in the web3 sector to deliver top-notch smart contract audit solutions, tailored to the clients' evolving
business needs.

Check our website for further information: https://chainsulting.de

